Построение и деление углов. Семинар доом: деление угла циркулем и линейкой Решение задач самостоятельной работы

8 июня 2011

Деление прямых линий и углов может быть произведено двояким образом: на глаз и с помощью геометрического построения.

При делении прямой на две равные части поступают следующим образом. Половину данной прямой берут циркулем на глаз и откладывают эту половину от обоих концов прямой. Если концы половинок сходятся, то, значит, данная прямая разделена правильно, если нет, то ошибка (разница) делится опять пополам на глаз и прибавляется (или отнимается, смотря по надобности) ко взятой циркулем половине.

Так же поступают при делении на 3, 5 и т. д. равных частей. При делении на 4 равные части сначала делят прямую пополам, а потом — обе ее половины. При делении на 6 равных частей сначала делят прямую на 3 равные части, а затем каждую часть пополам.

Угол делят на равные части таким же образом, с той разницей, что делится на части дуга, проведенная любым радиусом из вершины данного угла и заключенная между сторонами угла. Точки деления соединяются с вершиной угла прямыми линиями.

Деление на глаз прямых линий и углов (дуг) сберегает время. Поэтому надо постоянно упражняться в таком делении.

Деление прямой линии построением производится так. Предположим, что данный отрезок AN требуется разделить на 5 равных-частей. Из конца прямой АВ под произвольным углом проводим прямую АС и на ней от точки А откладываем пять произвольных частей так, чтобы AD = DE = EF = FG = GH; соединяем Н с N и через точки D, Е, F и G проводим прямые, параллельные NH, которые пересекут AN в точках I, К, L, М так, что AL = IK = KL = LM = MN.

Деление углов на равные части построением выполняется тремя основными способами.

1. Данный угол ВАС разделить на 2, 4, 8 и т. д. равных частей.

Из точек D и как из центров, одинаковыми радиусами проводим дуги, которые пересекутся в F. Прямая FA разделит угол ВАС (а точка G — дугу DF) пополам.

Чтобы разделить угол или дугу на 4 равные части, надо повторить то же построение для каждой половины и т. д. Построение годится для любых углов: прямых, тупых и острых.

2. Прямой угол ВАС разделить на 3, 6, 12 и т. д. равных частей.

Радиусом AD из точек D и Е описываем дуги, которые пересекут дугу в точках F и G; проводим AF и AG, которые делят угол ВАС и дугу DF на 3 равные части.

Чтобы разделить угол на 6 равных частей, надо каждую треть разделить пополам и т. д. 

Всякий яругой угол, кроме прямого, может быть разделен на 3 равные части только на глаз или по транспортиру.

3. Угол, образуемый прямыми ЛВ и CD, разделить пополам при условии, что вершина угла недоступна.

Через произвольную точку Е на прямой CD проводим прямую EG, параллельную ЛВ из этой же точки произвольным радиусом описываем дугу GH;соединяем G и H прямой линией и проводим ее до пересечения с ЛВ в точке I; далее делим прямую HI пополам в точке М и через эту точку проводим к прямой HI перпендикуляр KL, этот перпендикуляр разделит угол, вершина которого недоступна, на 2 равные части. Иногда надо выполнить построение перехода двух полос неодинаковой ширины это надо делать с помощью закругления по дуге круга, как показано на рисунке.

Продолжаем отрезки а, с и b, d до взаимного пересечения в точках A и В и образовавшиеся углы делим пополам. Если продолжить перпендикуляр DC до пересечения с биссектрисами углов ЕАС и FBD, то полученные точки М и М 1 будут центрами искомых закруглений.

Угол делят на равные части и с помощью транспортира. Если требуется, например, данный угол разделить на 7 равных частей, то находят, чему равен угол, и полученное число градусов делят на 7; результат обычно бывает неточный, так как на обыкновенные транспортиры минуты и секунды не наносятся. Необходимое исправление делается на глаз.

«Отделка комнат при ремонте»,
Н.П.Краснов

Мы уже говорили, что для исполнения некоторых видов малярных работ необходимо уметь рисовать. А умение рисовать, в свою очередь, предполагает знание правил построения геометрических фигур. Эскизы на бумаге вычерчивают при помощи треугольников, рейсшин, транспортаpa и циркуля, а на плоскости стен и потолков построения выполняются при помощи веска, линейки, деревянного циркуля и шнура. При этом надо…


Прямой угол, т. е. равный 90°, образуется двумя взаимно перпендикулярными линиями. Перпендикуляр строится следующим образом. Опустить перпендикуляр. Из данной точки С (лежащей вне прямой), как из центра, произвольным радиусом описываем дугу так, чтобы она пересекла данную прямую в двух точках D и Е из этих точек, как из центров, одинаковыми радиусами описываем дуги, чтобы они…

Академик Российской АН Н. ДОЛЛЕЖАЛЬ.

Давний автор журнала академик Николай Антонович Доллежаль - крупный специалист в области энергетики. В свободное время Николай Антонович занимается исследованием знаменитых задач древности, известных как трисекция угла, удвоение куба и квадратура круга (см. "Наука и жизнь" № 7, 1993 г.; №№ 3, 8, 1994 г.; № 9, 1995 г.). Сложность всех этих задач состоит в том, что решаться они должны без вычислений и расчетов, чисто геометрически, только с помощью циркуля и линейки без делений. Используя именно этот классический метод, Н. А. Доллежаль сумел найти очень изящное решение задачи о делении на три равные части произвольного угла.

Наука и жизнь // Иллюстрации

Суть этой геометрической задачи заключается в отыскании графического метода деления произвольного угла на три равные части с помощью циркуля и обыкновенной линейки. Ниже приводим описание метода, решающего эту задачу независимо от размера и типа (острый, тупой) угла, предлагаемого для разделения. Ограничений на формы геометрических фигур нет, численных измерений или вычислений не делается. Для примера взят случайный угол.

Геометрические элементы комбинируются геометрической фигурой, состоящей из равнобедренного треугольника АВС с нижним углом В, подлежащим разделению на три равных угла, и равносторонней трапеции АDFC, все четыре угла которой находятся на равном расстоянии от вершины угла В. Треугольник и трапеция сомкнуты своими основаниями АС. Предлагаемый метод решения задачи состоит в следующем:

1) Основанием для построения упомянутой геометрической фигуры служат уравнения, связывающие основные ее элементы:

где S - основание треугольника и трапеции; а - сторона трапеции; t - высота треугольника; h - высота трапеции.

Главные элементы фигуры находятся во взаимной зависимости: отношения основания к стороне трапеции и высот трапеции треугольника связаны уравнением (2).

У отношений S/а и h/t есть пределы применимости: отношение основания трапеции к ее стороне находится в пределах 2 ... 3, а отношения высот трапеции и треугольника изменяются при этом от бесконечности до 0. За пределами этих ограничений построение фигуры треугольник плюс трапеция невозможно.

В таблице для примера и выбора основных показателей для построения треугольника и трапеции приведены некоторые численные значения переменных, входящих в уравнения. С ее помощью можно задать отношение S/а и получить отношение h/t.

На рис. 1 представлено решение задачи предлагаемым методом. В качестве примера, не имеющего принципиального значения, взято равенство высот треугольника и трапеции. Для большей наглядности на рисунке приведены дополнительные геометрические построения: деление угла надвое, проведение параллельных линий и нанесение равномерных делений.

Решение задачи начинается с деления заданного угла АВС пополам линией ВЕ и проведения под прямым углом к ней через точку В горизонтальной линии XY. На линии ХY в обе стороны от точки В наносятся деления, отвечающие отношению основания трапеции к ее стороне, в данном случае 5 и 2. Это соотношение получено из уравнения (2) при условии равенства высот - см. таблицу.

Из точек, отвечающих делению 5, проводятся параллели биссектрисе ВЕ до пересечения со сторонами угла в точках А и С. Линия АС служит общим основанием треугольника и трапеции, отрезки АВ и ВС равны. Из точек, отвечающих отметке 2 на отрезке XY, проводятся линии, также параллельные биссектрисе угла АВС, и на них отрезками BD и BF, равными сторонам треугольника ВА = ВС, отмечаются точки D и F - вершины углов трапеции АDFC. Точки D и F определяют высоту ВЕ, равную сумме высот треугольника и трапеции.

Для проверки и доказательства проводятся диагонали AF и DC трапеции АDFC, пересекающиеся в точке Z на средней линии треугольника АВС. Образовавшиеся два треугольника АDF и DFC равнобедренные, поскольку их основания, т. е. диагонали трапеции, разделены в точках Т надвое, пересекаясь в них с радиусами ВD и ВF и средней линией РР трапеции. Сторона DF принадлежит обоим треугольникам, поэтому треугольники АВD, DВF и FВС равны. Все три их угла с вершинами в точке В равны между собой и в сумме составляют заданный угол АВС.

Отрезки прямых DM и FN образуют стороны ромбов ADFN и DFCM, своими геометрическими свойствами подтверждающих правильность построения.

На рис. 2 показано соотношение образовавшихся углов. Характерно, что нижние углы трапеции DАС = FСА равны одной трети разделяемого угла АВС.

При построении геометрической фигуры на рис. 1 было принято отношение величины основания трапеции к ее стороне 5:2 для простоты построений: этому соотношению отвечает равенство высот трапеции и треугольника.

На рис. 3 построена фигура "треугольник - трапеция" для сравнительно острого угла АВС. Исходным принимается отношение высоты треугольника к сумме высот треугольника и трапеции, равное 5:6, которому, согласно уравнению (1), отвечает значение S/а = 17/6. Как и в первом случае, это значение поровну, т. е. 8 1/2 к 3, откладывается на линии XY в обе стороны от точки В, и производятся аналогичные построения.

Вообще, нет необходимости предварительно принимать численные значения S/а. Достаточно на линиях ВХ и ВY из точки В отложить по три равных отрезка, отметив их концы, и из любой точки между второй и третьей отметками построить перпендикуляры до пересечения со сторонами угла В в точках А и С. Затем из первой отметки также восстановить перпендикуляры и на них отложить точки D и F на расстоянии от точки В, равном стороне треугольника АВС.

Если из точек А и С на линиях ВD и ВF отложить по две равноотстоящие точки N и М, получим отрезок NM, равный S-2а. Отношение этой длины к а определяет отношение высот трапеции и треугольника согласно формуле (2).

В остальном поступают, как и в первом случае. Правильность построения можно проверить по формуле

следующей из (2). Сумма t+h никогда не превышает сторону ВА(ВD) треугольника.

Графически равенство (4) проверяется так (рис. 4). Берется произвольный угол PQN, разделенный биссектрисой QQ?. На левой стороне угла от точки Q циркулем откладываются отрезки S-а и а, образующие точки Р и L. Далее точка Р соединяется с точкой Q? и из точки L проводится параллельная РQ? линия LQ???. Это означает, что на биссектрисе угла возникла отметка Q, причем а/(S-а)= = QQ??/QQ?. На правой стороне угла откладываем циркулем отрезки 2t+h и t+h из построенного чертежа. Конец отрезка 2t+h - точку N - также соединяем с точкой Q?, а из точки М - конца отрезка t+h - проводим линию, параллельную NQ?. На средней линии угла отмечается отношение (t+h)/(2t+h)=QQ??? /QQ?. Если линии LQ?? и МQ??? пересекаются на средней линии угла, это означает, что левая и правая части в формуле равны. Что и требуется.

Можно ли путем измерения соответствующих отрезков, в частности оснований треугольников, определить их длину? Нельзя, так как каждый служит хордой соответствующей воображаемой дуги окружности, содержащей долю, не поддающуюся измерению. Для определения точности решения задачи может быть использован только графический метод.

Таким образом, нами предложено доказательство возможности графического деления угла на три с помощью циркуля и линейки. Остается графически не выясненной связь элементов трапеции и треугольников, иными словами, зависимость между стороной трапеции а и высотой треугольника t. Эта задача может иметь самостоятельный характер для принципа построения трапеции.

Приношу благодарность профессору МГТУ В. И. Солонину за благожелательную критику.

Возникновение задачи о трисекции угла (т. е. деления угла на три равные части) обуславливается необходимостью решения задачи о построении правильных многоугольников. Построение правильного пятиугольника циркулем и линейкой должно было произвести на пифагорейцев большое впечатление, потому что правильная пятиконечная звезда была их опознавательным знаком (она символизировала здоровье). Известна следующая легенда.

Один пифагореец умирал на чужбине и не мог заплатить человеку, который за ним ухаживал. Перед смертью он велел ему изобразить на своем жилище пятиконечную звезду: если когда-нибудь мимо будет идти пифагореец, он обязательно спросит о ней. И действительно, несколько лет спустя некий пифагореец увидел этот знак и вознаградил хозяина дома.

Происхождение задачи о трисекции угла также связано с практической деятельностью, в частности, уметь делить окружность на равные части нужно было при изготовлении колеса со спицами, деление угла или дуги окружности на несколько равных частей необходимо было и в архитектуре, в создании орнаментов, в строительной технике и в астрономии.

С помощью циркуля и линейки для n=6 и 8 правильные n-угольники построить можно, а для n =7 и 9 нельзя. Построение правильного семиугольника - интересная задача: ее можно решить с помощью способа «вставок». Построение правильного семиугольника предложил Архимед. А вот попытки построить правильный девятиугольник как раз и должны были привести к задаче трисекции угла, потому что для построения правильного девятиугольника нужно было построить угол 360°/9= 120/3, т. е. разделить угол 120° на три равные части.

Почему греки предпочитали циркуль и линейку иным инструментам?

Ответить на этот вопрос однозначно и в достаточной степени убедительно ученые не могут. Потому ли, что циркуль и линейка являются наиболее простыми инструментами? Может быть и так. Однако можно указать множество иных инструментов, столь же простых, как циркуль и линейка, или почти столь же простых. С помощью некоторых из них решаются и сформулированные задачи.

В соответствующей литературе можно найти попытки объяснения такой необычной симпатии греков именно к циркулю и линейке. Любая геометрическая фигура состоит из двух видов линий – прямой или кривой. А любая кривая состоит из частей окружностей различного диаметра. При этом прямая и окружность – единственные линии постоянной кривизны на плоскости.

Деление прямого угла на три равные части.

В некоторых частных случаях легко удается выполнить деление угла. Так, деление прямого угла на три равные части умели производить еще пифагорейцы, основываясь на том, что в равностороннем треугольнике каждый угол равен 60º.

Пусть требуется разделить на три равные части прямой (MAN.

Откладываем на луче AN произвольный отрезок АС, на котором строим равносторонний треугольник АСВ. Так как (САВ равен 60º, то (ВАМ равен 30º. Построим биссектрису АD угла САВ, получаем искомое деление прямого (МАN на три равные угла: (NAD, (DAB, (ВАМ.

Задача о трисекции угла оказывается разрешимой и при некоторых других частных значениях угла (например, для углов в 90о / 2n, где n – натуральное число). То, что любой угол невозможно разделить на три равные части с помощью только циркуля и линейки было доказано лишь в первой половине XIX века.

Решение способом «вставок»

Некоторые способы трисекции угла, рассматриваемые греками, использовали так называемый метод вставки. Он заключался в том, чтобы найти положение прямой, проходящей через данную точку O, на которой две заданные прямые (или прямая и окружность) высекали бы отрезок данной длины a. Такое построение можно осуществить с помощью циркуля и линейки с двумя делениями, расстояние между которыми равно a.

С помощью «вставок» разделить угол на три равные части очень легко. Возьмем на стороне угла с вершиной В произвольную точку А и опустим из нее перпендикуляр АС на другую сторону.

Проведем через точку А луч сонаправленный с лучом ВС. Вставим теперь между лучами АС и l отрезок DE длиной 2АВ так, чтобы его продолжение проходило через точку В. Тогда (ЕВС= (ABC/3. В самом деле, пусть G - середина отрезка DE. Точка А лежит на окружности с диаметром DE, поэтому AG = GE = DE/2 = AB. Треугольники BAG и AGE равнобедренные, поэтому (ABG = (AGB = 2(AEG = 2(EBC.

Папп Александрийский показал, что задача «вставления» отрезка между данными перпендикулярными прямыми l1 и l2 сводится к построению точки пересечения окружности и гиперболы. Рассмотрим прямоугольник ABCD, продолжения сторон ВС и CD которого являются данными прямыми, а вершина А является данной точкой, через которую нужно провести прямую, пересекающую прямые l1 и l2 в таких точках Е и F, что отрезок EF имеет данную длину.

Достроим треугольник DEF до параллелограмма DEFG. Для построения искомой прямой достаточно построить точку G, а затем через точку А провести прямую, параллельную прямой DG. Точка G удалена от точки D на данное расстояние DG = EF, поэтому точка G лежит на окружности, которую можно построить.

С другой стороны, из подобия треугольников ABF и EDA получаем АВ: ED = BF: AD, т. е. ED*BF=AB*AD. Следовательно, FG*BF=AB*AD = SABCD, т. е. точка G лежит на гиперболе (если направить оси Ох и Оу по лучам BF и ВА, то эта гипербола задается уравнением xy = SABCD)

Решение с помощью квaдрaтрисы

К «грaммическим» зaдaчaм относится зaдaчa о делении углa в любом отношении. Первую кривую для решения тaкой зaдaчи изобрел Гиппий Элидский. B дальнейшем (нaчинaя с Динострaтa) эту кривую тaкже использовaли и для решения квaдрaтуры кругa. Лейбниц нaзвaл эту кривую квaдрaтрисой.

Oнa получается следующим образом. Пусть в квaдрaте ABCD концы отрезкa B′C′ рaвномерно движутся по сторонaм, соответственно, BA и CD, a отрезок AN рaвномерно врaщaется вокруг точки A. Oтрезок B′C′ в нaчaльный момент совпaдaет с отрезком BC, a отрезок AN – с отрезком AB; обa отрезкa одновременно достигaют своего конечного положения AD. Квaдрaтрисой нaзывaется кривaя, которую при этом описывaет точкa пересечения отрезков B′C′ и AN.

Для того чтобы разделить острый угол φ в некотором отношении, надо на вышеприведенном чертеже отложить угол DAL = φ, где L лежит на квадратрисе. Опустим перпендикуляр LH на отрезок AD. Пазделим этот перпендикуляр в нужном отношении точкой P. Проведем через P отрезок, параллельный AD, до пересечения с квадратрисой в точке Q; луч AQ делит угол LAD в необходимом отношении, так как, по определению квадратрисы, (LAQ: (QAD = (LP: (LH.

Практическая работа по построению трисектрис угла

Способом «вставок»

С помощью квaдрaтрисы

Решение с помощью теоремы Морлея

Так как любой угол нельзя разделить на три равные части, то мы можем решить задачу о трисекции угла в обратном порядке, используя теорему Морлея.

Теорема. Пусть ближайшие к стороне ВС трисектрисы углов B и С пересекаются в точке A1; точки В1 и С1 определяются аналогично. Тогда треугольник А1В1С1 равносторонний, а отрезок С1С является перпендикуляром к основанию правильного треугольника.

Решим следующую задачу: построим треугольник, из всех углов которого проведены трисектрисы.

План построения.

1) Построим два произвольных угла (BAC1 и (АВС1, одна сторона которых является общей.

Построенные углы должны удовлетворять неравенству:

2) Пусть луч АС1 – ось симметрии. Отразим (ВАС1 относительно оси АС1. Аналогично, отразим относительно оси ВС1 (АВС1.

3) Пусть луч АС2 – ось симметрии. Отразим (C1АC2 относительно оси АС2. Аналогично, отразим относительно оси ВС2 (C1ВC2.

4) Соединим точки пересечения трисектрис С1 и С2 отрезком С1С2.

5) В теореме Морли сказано, что при пересечении трисектрис треугольника получается правильный треугольник, а отрезок С1С2 является перпендикуляром к основанию правильного треугольника и проходит через вершину этого треугольника. Для того, чтобы построить правильный треугольник, зная его высоту, необходимо: а) построить лучи, исходящие из точки С1 под углом 30º относительно отрезка С1С2; б) отметить точки пересечения построенных лучей с трисектрисами буквами В1 и А1; в) соединить точки А1, В1, С1. Получим равносторонний треугольник А1В1С1.

6) Проведем лучи из точки С, проходящие через вершины правильного треугольника В1 и А1.

Оставим на рисунке отрезки трисектрис треугольника.

Мы построили треугольник АВС, из всех углов которого проведены трисектрисы.

Неразрешимость трисекции угла с помощью циркуля и линейки

Для доказательства невозможности разделить любой угол на три равные части с помощью циркуля и линейки достаточно доказать, что нельзя так разделить некоторый конкретный угол. Мы докажем, что с помощью циркуля и линейки нельзя произвести трисекцию угла 30°. Введем систему координат Оху, выбрав в качестве начала координат вершину данного угла АОВ и направив ось Ох по стороне ОА. Можно считать, что точки А и В удалены от точки О на расстояние 1. Тогда в задаче трисекции угла требуется по точке с координатами (cos Зφ, sin Зφ) построить точку (cosφ, sinφ). В случае, когда φ=10°, исходная точка имеет координаты. Обе ее координаты выражаются в квадратных радикалах. Поэтому достаточно доказать, что число sin 10° не выражается в квадратных радикалах.

Так как sin3φ = sin(φ + 2φ) =

sin(α + β) = sinα cosβ + cosα sinβ

Sinφ cos2φ + cosφ sin2φ =

cos2α = cos2α - sin2α

sin2α = 2sinα cosα

Sinφ(cos2φ - sin2φ) + cosφ(2sinφ cosφ) =

sin2α + cos2α = 1 cos2α = 1 - sin2α

Sinφ(1 - sin2φ - sin2φ) + 2sinφ cos2φ =

Sinφ(1 - 2sin2φ) + 2sinφ(1 - sin2φ) =

Sinφ(1 - 2sin2φ + 2 - 2sin2φ) =

Sinφ(3 - 4sin2φ) =

3sinφ - 4sin3φ sin3φ = 3sinφ - 4sin3φ, то число х = sin 10° удовлетворяет кубическому уравнению

3x - 4x3 = ½ (φ =10°, 3φ =30°, sin3φ = ½)

8x3 - 6x + 1 = 0

(2x)3 -3*2x + 1 = 0

Достаточно доказать, что у этого уравнения нет рациональных корней. Предположим, что 2x=p/q, где р и q - целые числа, не имеющие общих делителей. Тогда p3 – 3pq2 + q3 = 0, т. е. q3=p(3q2-p2). Следовательно, число q делится на р, а значит, р=±1. Поэтому ±13q2 + q3 =0, т. е. q2(q±3)= ±1. Число 1 делится на q, поэтому q=±1. В итоге получаем, что х=±1/2. Легко проверить, что значения ±1/2 не являются корнями уравнения. Получено противоречие, поэтому уравнение не имеет рациональных корней, а значит, число sin10° не выражается в квадратных радикалах.

Применение

Трисекция угла необходима при построении правильных многоугольников. Мы рассмотрим процесс построения на примере правильного девятиугольника, вписанного в окружность.

Строим прямоугольный треугольник АВС. Строим трисектрисы ВС1 и ВС2. Получились углы по 30º. Делим один из образовавшихся углов на два по 15º биссектрисой. К прямому углу «добавляем» по 15º с каждой стороны. Снова строим трисектрисы получившегося угла DBE. Повторяем так еще дважды, поворачивая треугольник в точке В так, чтобы DB совпала с предыдущим положением ВЕ. Соединяем полученные точки.

Нам удалось построить правильный девятиугольник, используя построение трисектрис.

Трисектор

Задача о трисекции угла в общем случае не разрешима при помощи циркуля и линейки, но это вовсе не значит, что данную задачу нельзя решить другими вспомогательными средствами.

Для достижения указанной цели придумано много механических приборов, которые называются трисекторами. Простейший трисектор легко изготовить из плотной бумаги, картона или тонкой жести. Он послужит подсобным чертёжным инструментом.

Трисектор и схема его применения.

Примыкающая к полукругу полоска АВ равна по длине радиусу полукруга. Край полоски ВD составляет прямой угол с прямой АС; он касается полукруга в точке В; длина этой полоски произвольна. На том же рисунке показано применение трисектора. Пусть, например, требуется разделить на три равные части угол КSМ

Трисектор помещают так, чтобы вершина угла S находилась на линии ВD, одна сторона угла прошла через точку А, а другая сторона коснулась полукруга. Затем проводят прямые SВ и SО, и деление данного угла на три равные части окончено. Для доказательства соединим отрезком прямой центр полукруга О с точкой касания N. Легко убедиться в том, что треугольник АSВ равен треугольнику SВО, а треугольник SВО равен треугольнику OSN. Из равенства этих трех треугольников следует, что углы АSВ, ВS0 и 0SN равны между собой, что и требовалось доказать.

Такой способ трисекции угла не является чисто геометрическим; его скорее можно назвать механическим.

Часы-трисектор

(инструкция по применению)

Оборудование: циркуль, линейка, часы со стрелками, карандаш, прозрачная бумага.

Ход работы:

Переведите фигуру данного угла на прозрачную бумагу и в тот момент, когда обе стрелки часов совмещаются, наложите чертеж на циферблат так, чтобы вершина угла совпала с центром вращения стрелок и одна сторона угла пошла вдоль стрелок.

В тот момент, когда минутная стрелка часов передвинется до совпадения с направлением второй стороны данного угла, проведите из вершины угла луч по направлению часовой стрелки. Образуется угол, равный углу поворота часовой стрелки. Теперь при помощи циркуля и линейки этот угол удвойте и удвоенный угол снова удвойте. Полученный таким образом угол и будет составлять ⅓данного.

Действительно, всякий раз, когда минутная стрелка описывает некий угол, часовая стрелка за это время передвигается на угол, в 12 раз меньший, а после увеличения этого угла в 4 раза получается угол (a/12)*4=⅓ a.

Заключение

Итак, неразрешимые задачи на построение сыграли особую роль в истории математики. В конце концов, было доказано, что эти задачи невозможно решить, пользуясь только циркулем и линейкой. Но уже сама постановка задачи - «доказать неразрешимость» - была смелым шагом вперёд.

Вместе с тем предлагалось множество решений при помощи нетрадиционных инструментов. Всё это привело к возникновению и развитию совершенно новых идей в геометрии и алгебре.

Закончив и проанализировав свою исследовательскую работу, я сделала следующие выводы:

✓ возникновение подобных задач обуславливалось их практической значимостью (в частности, построение правильных многоугольников);

✓ подобные задачи вызывают развитие новых методов и теорий (способ «вставок», появление квадратрисы, теоремы Морли);

✓ неразрешимые задачи привлекают больше внимания к наукам: найти решение или доказать невозможность – большой почёт.

А также я узнала:

✓ о математиках, изучавших данную задачу;

✓ новые понятия, термины (трисекция, трисектор, квадратриса) и теоремы (Морлея) и научилась:

✓ эффективно находить и отбирать необходимый материал;

✓ систематизировать полученные знания;

✓ правильно оформлять научно-исследовательскую работу.

Выполнить трисекцию угла - это значит разделить угол на три равные части. Сделать это, конечно, совсем нетрудно. Можно, например, измерить данный угол транспортиром, разделить найденное число градусов на три, а затем отложить посредством того же транспортира угол, содержащий полученное в частном число градусов. Но можно обойтись

и без транспортира, применяя метод «последовательных приближений»: построив произвольным радиусом дугу, для которой данный угол является центральным, возьмем на глаз хорду, соответствующую третьей части дуги, и отложим эту хорду последовательно три раза по дуге, начиная от одного из ее концов. Если после этого мы окажемся на другом конце дуги, задача решена. Если же, как это обыкновенно и бывает, мы не дойдем до другого конца дуги, или перейдем через него, то взятую нами на глаз хорду надо исправить, увеличив или уменьшив ее на одну треть расстояния от полученной точки до конца дуги, причем эту одну треть берем опять-таки на глаз. Эту исправленную хорду снова откладываем на дуге и в случае надобности вновь исправляем тем же способом. Каждая новая (исправленная) хорда будет давать все более точное решение, и, наконец, повторив операцию несколько раз, мы получим хорду, которая уложится на данной дуге практически ровно три раза, и трисекция угла будет выполнена. Конечно, эти два способа позволяют делить данный угол не только на три, но на любое число равных частей.

Однако, когда математики говорят о проблеме трисекции угла, они имеют в виду не эти весьма ценные в практическом отношении, но все же лишь приближенные способы, а точный способ, притом основанный на применении исключительно циркуля и линейки. Необходимо еще отметить, что имеется в виду использование одного лишь ребра линейки и что линейка должна служить только для проведения прямых (не допускается использование, например, масштабных делений), а циркуль - только для вычерчивания окружностей. Наконец, искомый способ должен давать решение задачи посредством конечного числа операций проведения прямых и окружностей. Последнее замечание очень существенно. Так, установив (по формуле суммы геометрической бесконечно убывающей прогрессии), что

можно предложить следующее решение задачи трисекции угла, требующее применения только линейки и циркуля: делим данный угол на 4 равные части, что, как известно, выполнимо посредством циркуля и линейки, а затем к полученному углу прибавляем поправку, равную четверти его самого, т. е. данного угла, потом вторую поправку,

равную первой, т. е. данного угла, и т. д. Точное решение задачи этим способом требует бесконечно большого числа операций (делений углов на 4 равные части), а потому не является тем классическим решением, какое имеют в виду, когда говорят о решении задачи трисекции угла и других задач на построение.

Итак, у нас будет идти речь о точном решении задачи трисекции угла посредством проведения конечного числа прямых и окружностей.

Для некоторых углов эта задача решается весьма просто. Так, для трисекции угла в 180° достаточно построить угол в 60°, т. е. угол равностороннего треугольника, а для трисекции углов в 90° и 45° - углы в 30° и 15°, т. е. половину и четверть угла равностороннего треугольника. Однако доказано, что наряду с бесконечным множеством углов, допускающих трисекцию, существует бесконечное же множество углов, не допускающих трисекции (в указанном выше смысле). Так, нельзя разделить на три равные части (посредством проведения конечного числа прямых и окружностей) ни угол в 60°, ни угол в 30°, ни угол в 15°, ни угол в 40°, ни угол в 120°, ни бесконечное множество других углов.

Теперь выясним, правилен ли следующий часто рекомендуемый способ деления произвольного угла на три равные части. Из вершины В произвольным радиусом проводим дугу окружности, которая пересечет стороны угла в точках (черт. 39). Делим хорду на три равные части и соединяем точки деления с В. Углы окажутся, будто бы, равными, и трисекция произвольного угла следовательно, будет выполнена так, как

требуется, т. е. посредством проведения конечного числа прямых и окружностей: деление отрезка на три равные части, которое здесь требовалось, выполнимо, как известно, именно так.

Предлагающие такое решение полагают, что равенство отрезков на которые мы разделили хорду влечет за собой и равенство дуг которые получатся, если продолжить и до пересечения с окружностью. Так ли это? Если эти дуги равны, то равны и углы (пусть каждый из них равен а), равны и стягивающие их хорды Но отрезок больше отрезка (это утверждение подсказывается чертежом, но ниже мы его докажем), а отрезок равен отрезку так как углы и равны:

Следовательно, при равенстве отрезков и отрезки и вопреки условию неравны, и предположение о равенстве и надо отвергнуть.

Опустив перпендикуляр из вершины В на хорду замечаем, что вся фигура симметрична относительно ВК: перегнув чертеж по мы приведем обе его половинки к совпадению. Отсюда заключаем, что отрезок III перпендикулярен к а в силу этого отрезок параллелен и треугольники и подобны, что дает: Но а потому и как мы и утверждали выше.

Деление угла пополам (рисунок 26, а). Из вершиныВ углаABC произвольным радиусом R 1 проводят дугу до пересечения ее со сторонами угла в точках М и N . Затем из точек M и N проводят дуги радиусом > R 1 до взаимного пересечения их в точке D . Прямая BD разделит данный угол пополам.

Деление угла на 4, 8 и т. д. равных частей осуществляется последовательным делением пополам каждой части угла (рисунок 26, б).

Рисунок 26

В том случае, когда угол задан сторонами, не пересекающимися в пределах чертежа, например AB иCD на рисунке 26, в, деление угла пополам выполняют так. На произвольном, но одинаковом расстоянииl от сторон угла проводят прямыеKL || AB иMN || CD и продолжают их до пересечения в точкеО . Полученный уголL ON делят пополам прямойOF . ПрямаяOF разделит пополам также и заданный угол.

Деление прямого угла на три равные части (рисунок 27). Из вершины прямого угла – точкиВ проводят дугу произвольным радиусомR до пересечения ее с обеими сторонами угла в точкахA иC . Тем же радиусомR из точекA иС проводят дуги до пересечения с дугойAC в точкахМ иN . Прямые, проведенные через вершину углаВ и точкиМ иN , разделят прямой угол на три равные части.

Рисунок 27

2.4 Деление окружности на равные части, построение правильных многоугольников

2.4.1 Деление окружности на равные части и построение правильных вписанных многоугольников

Для деления окружности пополам достаточно провести любой ее диаметр. Два взаимно перпендикулярных диаметра разделят окружность на четыре равные части (рисунок 28, а). Разделив каждую четвертую часть пополам, получают восьмые части, а при дальнейшем делении – шестнадцатые, тридцать вторые части и т. д. (рисунок 28, б). Если соединить прямыми точки деления, то можно получить стороны правильного вписанного квадрата (а 4 ), восьмиугольника (а 8 ) и т. д. (рисунок 28, в).

Рисунок 28

Деление окружности на 3, 6, 12 и т, д. равных частей, а также построение соответствующих правильных вписанных многоугольников осуществляют следующим образом. В окружности проводят два взаимно перпендикулярных диаметра1–2 и3–4 (рисунок 29 а). Из точек1 и2 как из центров описывают дуги радиусом окружностиR до пересечения с ней в точкахА, В, С иD . ТочкиA ,B ,1, С, D и2 делят окружность на шесть равных частей. Эти же точки, взятые через одну, разделят окружность на три равные части (рисунок 29, б). Для деления окружности на 12 равных частей описывают еще две дуги радиусом окружности из точек3 и4 (рисунок 29, в).

Рисунок 29

Построить правильные вписанные треугольник, шестиугольник и т. д. можно также с помощью линейки и угольника в 30 и 60°. На рисунке 30 приведено подобное построение для вписанного треугольника.

Рисунок 30

Деление окружности на семь равных частей и построение правильного вписанного семиугольника (рисунок 31) выполняют с помощью половины стороны вписанного треугольника, приблизительно равной стороне вписанного семиугольника.

Рисунок 31

Для деления окружности на пять или десять равных частей проводят два взаимно перпендикулярных диаметра (рисунок 32, а). РадиусOA делят пополам и, получив точкуВ , описывают из нее дугу радиусомR = BC до пересечения ее в точкеD с горизонтальным диаметром. Расстояние между точкамиC иD равно длине стороны правильного вписанного пятиугольника (а 5 ), а отрезокOD равен длине стороны правильного вписанного десятиугольника (а 10 ). Деление окружности на пять и десять равных частей, а также построение вписанных правильных пятиугольника и десятиугольника показаны на рисунке 32, б. Примером использования деления окружности на пять частей является пятиконечная звезда (рисунок 32, в).

Рисунок 32

На рисунке 33 приведен общий способ приближенного деления окружности на равные части . Пусть требуется разделить окружность на девять равных частей. В окружности проводят два взаимно перпендикулярных диаметра и вертикальный диаметрAB делят на девять равных частей с помощью вспомогательной прямой (рисунок 33, а). Из точкиB описывают дугу радиусомR =AB , и на пересечении ее с продолжением горизонтального диаметра получают точкиС иD . Из точекC иD через четные или нечетные точки деления диаметраAB проводят лучи. Точки пересечения лучей с окружностью разделят ее на девять равных частей (рисунок 33, б).

Рисунок 33

При построении необходимо учитывать, что такой способ деления окружности на равные части требует особенно большой точности выполнения всех операций.

Похожие статьи

  • Стивен Кови Восьмой навык

    Восьмой навык. От эффективности к величию Стивен Кови (Пока оценок нет) Название: Восьмой навык. От эффективности к величию Автор: Стивен Кови Год: 2010 Жанр: Зарубежная деловая литература, Зарубежная психология, Менеджмент и кадры,...

  • Книга клинок выковывается читать онлайн Иллюстрации к «Глоссариймк»

    Мастер клинков 2- Клинок выковываетсяИллюстрацииИллюстрации к «Глоссариймк»ПрологНочью я спал плохо, неудобные узкие деревянные нары и отсутствие одеяла – а в бараке было довольно холодно – долго не давали мне заснуть. Только под утро я...

  • Книга мавр сделал свое дело читать онлайн

    Мужчине на вид было около сорока. Дорогой костюм, галстук с золотой булавкой. Он рывком ослабил узел галстука, страдальчески морщась. Интеллигентное лицо с аккуратной бородкой, тонким носом и темными гипнотическими глазами сейчас вряд ли...

  • Все о дне открытых дверей в вузах и колледжах Что такое день открытых дверей в институте

    Практически каждый мало-мальски известный вуз несколько раз в год проводит день открытых дверей. День открытых дверей – это мероприятие, ориентированное на учащихся старших классов и их родителей. Проводится с целью ознакомления...

  • На что обратить внимание при выборе школы

    В Москве функционируют сотни различных организаций, которые предлагают каждому пройти уникальные . Количество желающих исчисляется тысячами, так как английский присутствует во многих научных и бизнес сферах. Однако не секрет, что даже...

  • Лучшие мобильные приложения для изучения английского языка

    Вот и настала осень. Период, когда кончилось лето и начались школьные и институтские занятия. А вот знание английского языка актуально для всех возрастных групп и сейчас самое время начать его учить. Для этого нужно опять сидеть за...