Равноускоренное движение по физике. Уравнения равноускоренного движения. Формулы. Решение задач

Равноускоренное движение - движение, при котором ускорение постоянно по модулю и направлению .

Примером такого движения является движение тела, брошенного под углом α {\displaystyle \alpha } к горизонту в однородном поле силы тяжести - тело движется с постоянным ускорением a → = g → {\displaystyle {\vec {a}}={\vec {g}}} , направленным вертикально вниз.

При равноускоренном движении по прямой скорость тела определяется формулой:

v (t) = v 0 + a t {\displaystyle v(t)=v_{0}+at}

Зная, что v (t) = d d t x (t) {\displaystyle v(t)={\frac {d}{dt}}x(t)} , найдём формулу для определения координаты x:

x (t) = x 0 + v 0 t + a t 2 2 {\displaystyle x(t)=x_{0}+v_{0}t+{\frac {at^{2}}{2}}}

Примечание . Равнозамедленным можно назвать движение, при котором модуль скорости равномерно уменьшается со временем (если вектора v → {\displaystyle {\vec {v}}} и a → {\displaystyle {\vec {a}}} противонаправлены). Равнозамедленное движение также является равноускоренным.

Энциклопедичный YouTube

  • 1 / 5

    В случае одномерного равноускоренного движения вдоль координаты x имеет место формула:

    Δ x = v x 2 − v 0 x 2 2 a x {\displaystyle \Delta x={\frac {v_{x}^{2}-v_{0x}^{2}}{2a_{x}}}} ,

    Криволинейное равноускоренное (равнопеременное) движение также можно рассматривать как одномерное. В этом случае используется обобщённая координата S , часто называемая путём . Эта координата соответствует длине пройденной траектории (длине дуги кривой). Таким образом, формула приобретает вид:

    Δ S = v 2 − v 0 2 2 a τ {\displaystyle \Delta S={\frac {v^{2}-v_{0}^{2}}{2a_{\tau }}}} ,

    где a τ {\displaystyle a_{\tau }} - тангенциальное ускорение , которое «отвечает» за изменение модуля скорости тела.

    Из вышеприведенных формул можно получить выражения для определения конечной скорости тела, при известных начальной скорости, ускорении и перемещении:

    v x = ± v 0 x 2 + 2 a x Δ x {\displaystyle v_{x}=\pm {\sqrt {v_{0x}^{2}+2a_{x}\Delta x}}}

    В случае криволинейного равноускоренного движения имеем:

    v = ± v 0 2 + 2 a τ Δ S {\displaystyle v=\pm {\sqrt {v_{0}^{2}+2a_{\tau }\Delta S}}}

    Аналогичные соотношения можно записать для выражений:

    v y = ± v 0 y 2 + 2 a y Δ y {\displaystyle v_{y}=\pm {\sqrt {v_{0y}^{2}+2a_{y}\Delta y}}} ; v z = ± v 0 z 2 + 2 a z Δ z {\displaystyle v_{z}=\pm {\sqrt {v_{0z}^{2}+2a_{z}\Delta z}}} .

    И найти конечную скорость по теореме Пифагора

    | v → | = v x 2 + v y 2 + v z 2 {\displaystyle |{\vec {v}}|={\sqrt {v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}}} .

    Теорема о кинетической энергии точки

    Формула перемещения при равноускоренном движении используется при доказательстве теоремы о кинетической энергии . Для этого необходимо перенести ускорение в левую часть и домножить обе части на массу тела:

    m a x Δ x = m v x 2 2 − m v 0 x 2 2 {\displaystyle ma_{x}\Delta x={\frac {mv_{x}^{2}}{2}}-{\frac {mv_{0x}^{2}}{2}}} .

    Записав аналогичные соотношения для координат y и z и просуммировав все три равенства получим соотношение:

    F → ⋅ Δ r → = m v 2 2 − m v 0 2 2 {\displaystyle {\vec {F}}\cdot {\vec {\Delta r}}={\frac {mv^{2}}{2}}-{\frac {mv_{0}^{2}}{2}}} .

    Слева стоит работа постоянной равнодействующей силы F → {\displaystyle {\vec {F}}} , а справа - разность кинетических энергий в конечный и начальный момент движения. Полученная формула представляет собой математическое выражение теоремы о кинетической энергии точки для случая равноускоренного движения .

    Если мгновенная скорость движущегося тела растет, то движение называют ускоренным, если мгновенная скорость уменьшается, то движение называют замедленным.

    Скорость в различных неравномерных движениях изменяется по разному. Например, товарный поезд, отходя от станции, движется ускоренно; на перегоне - то ускоренно, то равномерно, то замедленно; подходя к станции, он движется замедленно. Пассажирский поезд также движется неравномерно, но его скорость изменяется быстрее, чем у товарного поезда. Скорость пули в канале ствола винтовки возрастает от нуля до сотен метров в секунду за несколько тысячных долей секунды; при попадании в препятствие скорость пули уменьшается до нуля также очень быстро. При взлете ракеты ее скорость растет сначала медленно, а потом все быстрее.

    Среди разнообразных ускоренных движений встречаются движения, в которых мгновенная скорость за любые равные промежутки времени увеличивается на одну и ту же величину. Такие движения называют равноускоренными. Шарик, начинающий скатываться по наклонной плоскости или начинающий свободно падать на Землю, движется равноускоренно. Заметим, что равноускоренный характер этого движения нарушается трением и сопротивлением воздуха, которые пока учитывать не будем.

    Чем больше угол наклона плоскости, тем быстрее растет скорость скатывающегося по ней шарика. Еще быстрее растет скорость свободно падающего шарика (примерно на 10 м/с за каждую секунду). Для равноускоренного движения можно количественно охарактеризовать изменение скорости с течением времени, вводя новую физическую величину - ускорение.

    В случае равноускоренного движения ускорением называют отношение приращения скорости к промежутку времени, за который это приращение произошло:

    Ускорение будем обозначать буквой . Сравнивая с соответственным выражением из § 9, можно сказать, что ускорение есть скорость изменения скорости.

    Пусть в момент времени скорость была , а в момент она стала равной , так что за время приращение скорости составляет . Значит, ускорение

    (16.1)

    Из определения равноускоренного движения следует, что эта формула даст одно и то же ускорение, какой бы промежуток времени ни выбрать. Отсюда видно также, что при равноускоренном движении ускорение численно равно приращению скорости за единицу времени. В СИ единица ускорения есть метр на секунду в квадрате (м/с2), т. е. метр в секунду за секунду.

    Если путь и время измерены в других единицах, то и для ускорения надо принимать соответственные единицы измерения. В каких бы единицах ни выражать путь и время, в обозначении единицы ускорения в числителе стоит единица длины, а в знаменателе - квадрат единицы времени. Правило перехода к другим единицам длины и времени для ускорения аналогично правилу для скоростей (§11). Например,

    1 см/с^2=36 м/мин^2.

    Если движение не является равноускоренным, то можно ввести, пользуясь той же формулой (16.1), понятие среднего ускорения. Оно охарактеризует изменение скорости за определенный промежуток времени на пройденном за этот промежуток времени участке пути. На отдельных же отрезках этого участка среднее ускорение может иметь разные значения (ср. со сказанным в § 14).

    Если выбирать такие малые промежутки времени, что в пределах каждого из них среднее ускорение остается практически неизменным, то оно будет характеризовать изменение скорости на любой части этого промежутка. Найденное таким образом ускорение называют мгновенным ускорением (обычно слово «мгновенное» опускают, ср. § 15). При равноускоренном движении мгновенное ускорение постоянно и равно среднему ускорению за любой промежуток времени.

    Определение 1

    Движение, при котором за одинаковые интервалы времени тело проходит неравное расстояние, называют неравномерным (или переменным).

    При переменном движении скорость тела с течением времени меняется, по этой причине для характеристики подобного перемещения применяются определения средней и моментальной скоростей.

    Средней скоростью переменного движения $v_{cp}$ называют векторную величину, равную отношению перемещения тела $s$ к промежутку времени $t$, в течении которого оно совершило перемещение:

    $v_{cp} = lim\left(\frac{Ds}{Dt}\right)$.

    Переменное перемещение внедряет в процесс только лишь тот интервал времени, для которого эта скорость установлена. Мгновенной скоростью является скорость, какой тело обладает в определенный период времени (и значит, в конкретной точке траектории). Мгновенная скорость $v$ является пределом, к которому устремляется средняя скорость точки $v_{cp}$, в то время как промежуток времени движения точки стремится к 0:

    $v = lim\left(\frac{Ds}{Dt}\right)$.

    Из курса математики известно, что предел отношения приращения функции к приращению аргумента, когда последний стремится к 0 (если этот порог существует), выступает главной производной этой функции по данному аргументу.

    Изучим, как скатывается шарик с наклонной плоскости. Шар перемещается неровно: пути, проходимые им за последовательные одинаковые интервалы периода, увеличиваются. Таким образом, темп передвижения шарика возрастает. Перемещение объекта, скатывающегося с косой плоскости, считается классическим примером прямолинейного равноускоренного перемещения.

    Рассмотрим определение равноускоренного движения.

    Определение 2

    Прямолинейным равноускоренным движением именуют прямолинейное перемещение, при котором скорость тела за любые одинаковые интервалы времени меняется на одну и ту же величину.

    Прямо равноускорено способен передвигаться, к примеру, транспорт в период разгона. Но необычным может представиться в таком случае, то что во время торможения машина также способна передвигаться прямолинейно равноускорено! Так как в определении равноускоренного перемещения речь никак не идет не о росте стремительности, а только лишь об изменении скорости.

    Суть в том, что представление ускорения в физике обширнее, нежели в обыденном понимании. В повседневной речи под ускорением подразумевают как правило только лишь повышение быстроты. Мы в физике станем говорить, то что тело перемещается с ускорением постоянно, если быстрота тела меняется любым способом (возрастает либо снижается согласно модулю, меняется согласно направленности и т.п.).

    Может возникнуть вопрос: по какой причине мы уделяем внимание непосредственно прямолинейному равноускоренному перемещению? Забегая немножко вперед, скажем, что с этим перемещением мы будем часто иметь дело при рассмотрении законов механики.

    Напомним, что под воздействием стабильной силы тело перемещается прямо равноускорено. (В случае если первоначальная скорость тела равна нулю либо ориентирована по линии воздействия силы.) А в многочисленных задачах из сферы механики рассматривается непосредственно такая ситуация, в которой применяются уравнения прямолинейного равноускоренного движения, формулы конечной скорости и формулы пути без времени.

    Равноускоренное движение тела

    Определение 3

    Равноускоренное движение - это перемещение тела, при каком его скорость за всевозможные одинаковые интервалы времени меняется (способна расти либо снижаться) одинаково.

    Равноускоренное перемещение никак не обладает равной скоростью в течении всего пути прохождения. В этом случае имеется убыстрение, что отвечает за непрерывное повышение скорости. Ускорение перемещения остается постоянным, а темп регулярно и одинаково увеличивается.

    Кроме равноускоренного имеется также равнозамедленное перемещение, где модуль темп одинаково уменьшается. Таким образом, равноускоренное перемещение способно проходить в некоторых измерениях. Оно бывает:

    • одномерным;
    • многомерным.

    В случае первого - перемещение осуществляется по одной оси местоположение. В случае второго могут добавляться и прочие замеры.

    Ускорение тела

    Применять формулы перемещений при равноускоренном движении, а также формулы ускорения без времени возможно в абсолютно различных плоскостях. К примеру, с целью расчета падения жестких тел в свободном падении, места падения. В частности, для различных точных и геометрических расчетов.

    Исходя из противопоставления равномерному перемещению, неравномерное - это движение с разной скоростью согласно каждой траектории. В чем его особенность? Это неравномерное передвижение, но оно "равно ускоряется".

    Ускорение мы ассоциируем с увеличением скорости. Так как она ускоряется одинаково, получается равное увеличение скорости. Как понять, скорость равно увеличивается или нет? Нам нужно засечь время, оценить скорость через одинаковый промежуток времени, используя формулы ускорения при равноускоренном движении.

    Пример 1

    Например, автомобиль начал движение, за первые 2 сек он развил скорость до 10 м/с, за последующие 2 сек 20 м/с. Еще через 2 сек он уже едет со скоростью 30 м/с. Каждые 2 секунды темп возрастает и каждый раз на 10 м/с.

    Такое передвижение и является равноускоренным. Ускорением называется величина, определяющая, насколько каждый раз увеличивается скорость. Кроме этого необходимо обратить внимание на формулу скорости при равноускоренном движении.

    Перемещение с убывающей скоростью - замедленное передвижение. Однако физики каждое перемещение с изменяющейся быстротой называют ускоренным перемещением. Трогается ли автомобиль с участка (темп увеличивается), либо притормаживает - скорость снижается, в каждом случае он перемещается с ускорением.

    Быстроту изменения скорости характеризует ускорение. Это число, на которое меняется скорость за каждую секунду. Если ускорение точки по модулю большое, значит точка стремительно набирает скорость (при разгоне) или быстро сбрасывает ее (при торможении). Ускорение $a$ - это физическая векторная величина, которая равна отношению перемены скорости $\delta V$ к промежутку времени $\delta t$, за которое оно произошло

    $\vec{a} = \frac{\delta V}{\delta t}$

    Равномерное движение

    Механическое передвижение, при котором тело за всевозможные одинаковые интервалы времени проходит одну и ту же дистанцию является равномерным. При равномерном перемещении значение скорости точки остаётся стабильной (формула равномерного и равноускоренного движения).

    $υ = \frac{l}{\delta t}$, где:

    • $υ$– скорость равномерного движения (м/с)
    • $l$– пройденный телом путь (м)
    • $ \delta t$– интервал времени движения (с)

    Равномерное перемещение присутствует, если скорость предмета остается равной в каждом интервале пройденного пути, к этом случае период прохождения различных двух одинаковых участков будет одинаково.

    В случае если перемещение является не только лишь равномерным, а и прямолинейным, в таком случае путь тела одинаковый с модулем передвижения. По этой причине, воспользовавшись аналогией с предшествующей формулой равноускоренного движения, в физике определяют скорость равномерного прямолинейного перемещения:

    $ \vec{v} = \frac{\vec s}{\vec\delta t}$, где:

    • $ \vec{v}$ - скорость равно прямолинейного движения, м/с
    • $ \vec{s}$ - перемещение тела, м
    • ${\vec\delta t}$ - интервал времени движения, с

    Скорость равномерного прямолинейного движения является вектором, так как перемещение – величина векторная. А значит, имеет не только числовое значение, но и пространственное направление.

    Замечание 1

    Равноускоренное перемещение отлично от равномерного тем, что быстрота в этом перемещении регулярно и одинаково увеличивается, вплоть до конкретного предела. В равномерном же перемещении скорость не изменяется ни в коем случае, другим образом подобное перемещение никак не станет называться равномерным.

    В общем случае равноускоренным движением называют такое движение, при котором вектор ускорения остается неизменным по модулю и направлению. Примером такого движения является движение камня, брошенного под некоторым углом к горизонту (без учета сопротивления воздуха). В любой точке траектории ускорение камня равно ускорению свободного падения . Для кинематического описания движения камня систему координат удобно выбрать так, чтобы одна из осей, например ось OY , была направлена параллельно вектору ускорения. Тогда криволинейное движение камня можно представить как сумму двух движений – прямолинейного равноускоренного движения вдоль оси OY и равномерного прямолинейного движения в перпендикулярном направлении, т. е. вдоль оси OX (рис. 1.4.1).

    Таким образом, изучение равноускоренного движения сводится к изучению прямолинейного равноускоренного движения. В случае прямолинейного движения векторы скорости и ускорения направлены вдоль прямой движения. Поэтому скорость υ и ускорение a в проекциях на направление движения можно рассматривать как алгебраические величины.

    Рисунок 1.4.1.

    Проекции векторов скорости и ускорения на координатные оси. a x = 0, a y = –g

    При равноускоренном прямолинейном движении скорость тела определяется формулой

    (*)

    В этой формуле υ 0 – скорость тела при t = 0 (начальная скорость ), a = const – ускорение. На графике скорости υ (t ) эта зависимость имеет вид прямой линии (рис. 1.4.2).

    Рисунок 1.4.2.

    Графики скорости равноускоренного движения

    По наклону графика скорости может быть определено ускорение a тела. Соответствующие построения выполнены на рис. 1.4.2 для графика I. Ускорение численно равно отношению сторон треугольника ABC :

    Чем больше угол β, который образует график скорости с осью времени, т. е. чем больше наклон графика (крутизна ), тем больше ускорение тела.

    Для графика I: υ 0 = –2 м/с, a = 1/2 м/с 2 .

    Для графика II: υ 0 = 3 м/с, a = –1/3 м/с 2

    График скорости позволяет также определить проекцию перемещения s тела за некоторое время t . Выделим на оси времени некоторый малый промежуток времени Δt . Если этот промежуток времени достаточно мал, то и изменение скорости за этот промежуток невелико, т. е. движение в течение этого промежутка времени можно считать равномерным с некоторой средней скоростью, которая равна мгновенной скорости υ тела в середине промежутка Δt . Следовательно, перемещение Δs за время Δt будет равно Δs = υΔt . Это перемещение равно площади заштрихованной полоски (рис. 1.4.2). Разбив промежуток времени от 0 до некоторого момента t на малые промежутки Δt , получим, что перемещение s за заданное время t при равноускоренном прямолинейном движении равно площади трапеции ODEF . Соответствующие построения выполнены для графика II на рис. 1.4.2. Время t принято равным 5,5 с.

    Так как υ – υ 0 = at , окончательная формула для перемещения s тела при равномерно ускоренном движении на промежутке времени от 0 до t запишется в виде:

    (**)

    Для нахождения координаты y тела в любой момент времени t нужно к начальной координате y 0 прибавить перемещение за время t :

    (***)

    Это выражение называют законом равноускоренного движения .

    При анализе равноускоренного движения иногда возникает задача определения перемещения тела по заданным значениям начальной υ 0 и конечной υ скоростей и ускорения a . Эта задача может быть решена с помощью уравнений, написанных выше, путем исключения из них времени t . Результат записывается в виде

    Из этой формулы можно получить выражение для определения конечной скорости υ тела, если известны начальная скорость υ 0 , ускорение a и перемещение s :

    Если начальная скорость υ 0 равна нулю, эти формулы принимают вид

    Следует еще раз обратить внимание на то, что входящие в формулы равноускоренного прямолинейного движения величины υ 0 , υ, s , a , y 0 являются величинами алгебраическими. В зависимости от конкретного вида движения каждая из этих величин может принимать как положительные, так и отрицательные значения.

    Темы кодификатора ЕГЭ: виды механического движения, скорость, ускорение, уравнения прямолинейного равноускоренного движения, свободное падение.

    Равноускоренное движение - это движение с постоянным вектором ускорения . Таким образом, при равноускоренном движении остаются неизменными направление и абсолютная величина ускорения.

    Зависимость скорости от времени.

    При изучении равномерного прямолинейного движения вопрос зависимости скорости от времени не возникал: скорость была постоянна в процессе движения. Однако при равноускоренном движении скорость меняется с течением времени, и эту зависимость нам предстоит выяснить.

    Давайте ещё раз потренируемся в элементарном интегрировании. Исходим из того, что производная вектора скорости есть вектор ускорения:

    . (1)

    В нашем случае имеем . Что надо продифференцировать, чтобы получить постоянный вектор ? Разумеется, функцию . Но не только: к ней можно добавить ещё произвольный постоянный вектор (ведь производная постоянного вектора равна нулю). Таким образом,

    . (2)

    Каков смысл константы ? В начальный момент времени скорость равна своему начальному значению: . Поэтому, полагая в формуле (2) , получим:

    Итак, константа - это начальная скорость тела. Теперь соотношение (2) принимает свой окончательный вид:

    . (3)

    В конкретных задачах мы выбираем систему координат и переходим к проекциям на координатные оси. Часто хватает двух осей и прямоугольной декартовой системы координат, и векторная формула (3) даёт два скалярных равенства:

    , (4)

    . (5)

    Формула для третьей компоненты скорости, если она необходима, выглядит аналогично.)

    Закон движения.

    Теперь мы можем найти закон движения, то есть зависимость радиус-вектора от времени. Вспоминаем, что производная радиус-вектора есть скорость тела:

    Подставляем сюда выражение для скорости, даваемое формулой (3) :

    (6)

    Сейчас нам предстоит проинтегрировать равенство (6) . Это несложно. Чтобы получить , надо продифференцировать функцию . Чтобы получить , нужно продифференцировать . Не забудем добавить и произвольную константу :

    Ясно, что - это начальное значение радиус-вектора в момент времени . В результате получаем искомый закон равноускоренного движения:

    . (7)

    Переходя к проекциям на координатные оси, вместо одного векторного равенства (7) получаем три скалярных равенства:

    . (8)

    . (9)

    . (10)

    Формулы (8) - (10) дают зависимость координат тела от времени и поэтому служат решением основной задачи механики для равноускоренного движения.

    Снова вернёмся к закону движения (7) . Заметим, что - перемещение тела. Тогда
    получаем зависимость перемещения от времени:

    Прямолинейное равноускоренное движение.

    Если равноускоренное движение является прямолинейным, то удобно выбрать координатную ось вдоль прямой, по которой движется тело. Пусть, например, это будет ось . Тогда для решения задач нам достаточно будет трёх формул:

    где - проекция перемещения на ось .

    Но очень часто помогает ещё одна формула, являющаяся их следствием. Выразим из первой формулы время:

    и подставим в формулу для перемещения:

    После алгебраических преобразований (проделайте их обязательно!) придём к соотношению:

    Эта формула не содержит времени и позволяет быстрее приходить к ответу в тех задачах, где время не фигурирует.

    Свободное падение.

    Важным частным случаем равноускоренного движения является свободное падение. Так называется движение тела вблизи поверхности Земли без учёта сопротивления воздуха.

    Свободное падение тела, независимо от его массы, происходит с постоянным ускорением свободного падения , направленным вертикально вниз. Почти во всех задачах при расчётах полагают м/с.

    Давайте разберём несколько задач и посмотрим, как работают выведенные нами формулы для равноускоренного движения.

    Задача . Найти скорость приземления дождевой капли, если высота тучи км.

    Решение. Направим ось вертикально вниз, расположив начало отсчёта в точке отрыва капли. Воспользуемся формулой

    Имеем: - искомая скорость приземления, . Получаем: , откуда . Вычисляем: м/с. Это 720 км/ч, порядка скорости пули.

    На самом деле капли дождя падают со скоростью порядка нескольких метров в секунду. Почему такое расхождение? Сопротивление воздуха!

    Задача . Тело брошено вертикально вверх со скоростью м/с. Найти его скорость через c.

    Здесь , так что . Вычисляем: м/с. Значит, скорость будет равна 20 м/с. Знак проекции указывает на то, что тело будет лететь вниз.

    Задача. С балкона, находящегося на высоте м, бросили вертикально вверх камень со скоростью м/с. Через какое время камень упадёт на землю?

    Решение. Направим ось вертикально вверх, поместив начало отсчёта на поверхности Земли. Используем формулу

    Имеем: так что , или . Решая квадратное уравнение, получим c.

    Горизонтальный бросок.

    Равноускоренное движение не обязательно является прямолинейным. Рассмотрим движение тела, брошенного горизонтально.

    Предположим, что тело брошено горизонтально со скоростью с высоты . Найдём время и дальность полёта, а также выясним, по какой траектории происходит движение.

    Выберем систему координат так, как показано на рис. 1 .

    Используем формулы:

    В нашем случае . Получаем:

    . (11)

    Время полёта найдём из условия, что в момент падения координата тела обращается в нуль:

    Дальность полёта - это значение координаты в момент времени :

    Уравнение траектории получим, исключая время из уравнений (11) . Выражаем из первого уравнения и подставляем во второе:

    Получили зависимость от , которая является уравнением параболы. Следовательно, тело летит по параболе.

    Бросок под углом к горизонту.

    Рассмотрим несколько более сложный случай равноускоренного движения: полёт тела, брошенного под углом к горизонту.

    Предположим, что тело брошено с поверхности Земли со скоростью , направленной под углом к горизонту. Найдём время и дальность полёта, а также выясним, по какой траектории двигается тело.

    Выберем систему координат так, как показано на рис. 2 .

    Начинаем с уравнений:

    (Обязательно проделайте эти вычисления самостоятельно!) Как видим, зависимость от снова является уравнением параболы.Попробуйте также показать, что максимальная высота подъёма определяется формулой.

Похожие статьи